

The Class RE

Regular
Languages

CFLs

All Languages

R RE

ATM

HALT

The Story So Far

The Class RE

● Languages L that are in RE, but not R, are
those where:
● We can build a TM M, where (ℒ M) = L
● That TM M has the risk of getting stuck in an

infinite loop for at least some input string(s)
– But by definition of (ℒ M), only input strings

that are not in L are at risk of looping in M
● Just like the class Regular was defined in

multiple ways (DFAs, NFAs, RegExes), today
we’ll learn another way to define this class RE!

Get ready to answer
some questions in rapid-fire style!

(about 10 seconds per question)

Get ready to answer
some questions in rapid-fire style!

(about 10 seconds per question)

Definition:

A k-Clique is a set of k vertices of a graph
that are all adjacent to each other (all

possible edges between those k vertices
are present in the graph).

has a 4-Clique: does not have a 4-Clique
(has a 3-Clique though):

QUICK REACTION: Does this graph contain a 4-clique?QUICK REACTION: Does this graph contain a 4-clique?

Reflection:

Hm, that was kind of hard to assess in just
10 seconds! What if I select and highlight
just some of the nodes for you, would that

be a helpful hint?

WITH A “HINT”(?): Does this graph contain a 4-clique?WITH A “HINT”(?): Does this graph contain a 4-clique?

Reflection:

That was a terrible so-called “hint”! It
didn’t make the problem any easier to

solve. :-(

WITH A NEW HINT: Does this graph contain a 4-clique?WITH A NEW HINT: Does this graph contain a 4-clique?

Reflection:

The hint format (highlight some subset of 4
nodes) was a good format, but the hint is

only helpful if the contents are the correct
subset.

Discussion Question:

We found an effective, concise hint format
for proving that a graph has a 4-Clique.

What about for proving a graph does not
have a 4-Clique? What would an effective,

concise hint format for that look like?

Key intuition behind our next way of
defining RE:

A language L is in RE if, for any string w, if
you know that w ∈ L, then there is some

piece of evidence (a “hint”) you could
provide to make the problem of checking

that fact very easy.

More examples of
helpful hints

vs
unhelpful hints

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku puzzle
have a solution?

Verification

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku puzzle
have a solution?

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

1

2

5

4

6

3

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

1

2

5

4

6

3

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification

1

1

3

6

1

8

1

5

1

1

1

1

1

1

1

1

7

1

7

1

1

5

1

2

3

1

4

1

1

1

1

1

1

2

4

1

6

1

1

3

4

1

1

1

8

1

3

5

1

1

1

7

1

1

1

1

9

8

1

5

1

1

7

1

5

1

1

2

1

1

1

1

1

2

7

9

1

4

8

1

1

Does this Sudoku puzzle
have a solution?

Verification

1

1

3

6

1

8

1

5

1

1

1

1

1

1

1

1

7

1

7

1

1

5

1

2

3

1

4

1

1

1

1

1

1

2

4

1

6

1

1

3

4

1

1

1

8

1

3

5

1

1

1

7

1

1

1

1

9

8

1

5

1

1

7

1

5

1

1

2

1

1

1

1

1

2

7

9

1

4

8

1

1

Does this Sudoku puzzle
have a solution?

Verification

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

6

1

5

2

3

4

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

6

1

5

2

3

4

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verification

● In each of the preceding cases, we were given some
problem and some evidence supporting the claim that
the answer is “yes.”

● Given correct/helpful evidence, we can quickly see
that the answer is indeed “yes.”

● Given incorrect/unhelpful evidence, we aren't
immediately sure whether the answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,”

because the answer is no!
● Or maybe there is some evidence, but just not the evidence

we were given.
● Let's formalize this idea.

Verifiers

● A verifier for a language L is a TM V with the
following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called a

certificate for w.
● This is the “evidence.”

● Intuitively, what does this mean?

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Verifiers
● A verifier for a language L is a TM V with the

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers
● A verifier for a language L is a TM V with the

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● More notes about V:

● Notice that c is existentially quantified.
● Notice V is required to halt always (like a

decider).

Verifiers
● A verifier for a language L is a TM V with the

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● More notes about V:

● Notice that (ℒ V) ≠ L. (Good question to hold on
to for a second: what is (ℒ V)?)

● The job of V is just to check certificates, not to
decide membership in L.

Verifiers
● A verifier for a language L is a TM V with the

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A note about c:

● Figuring out what would make a good certificate
(should it be a number of steps to take, an
equation-solving variable assignment, a set of
graph nodes, an array of numbers to fill in a
whole Sudoku board?) is custom work to do for
each different language L.

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

Does this always halt?Does this always halt?

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

For one given ⟨n⟩ ∈ L (say 11), how many different values
of c will work to cause the verifier to accept?

For one given ⟨n⟩ ∈ L (say 11), how many different values
of c will work to cause the verifier to accept?

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 if (n == 1) return true;
 }
 return n == 1;
}

How many of these statements are true of (ℒ V)?
● ℒ(V) = L
● ℒ(V) ⊆ L
● L ⊆ (ℒ V)

How many of these statements are true of (ℒ V)?
● ℒ(V) = L
● ℒ(V) ⊆ L
● L ⊆ (ℒ V)

Some Verifiers

● Let L be the following language:

 L = { ⟨G⟩ | G is a graph and G has a
 Hamiltonian path }

● (A Hamiltonian path is a simple path that visits
every node in the graph.)

● Let's see how to build a verifier for L.

Verification

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Verifier Example:
Hamiltonian Path

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

● Do you see why ⟨G⟩ ∈ L iff there is a c where
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (size_t i = 0; i < c.size() - 1; i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (size_t i = 0; i < c.size() - 1; i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm

Where We’re Going Today

Verifier Recognizer

Somehow build this

Somehow build this

Verifier for ATM?

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is our standard example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!

Verifier for ATM?

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!

What would make a good certificate for
a verifier for ATM?

What would make a good certificate for
a verifier for ATM?

A Verifier for ATM
● Recall ATM = { ⟨M, w⟩ | M is a TM and M accepts w}

● Do you see why M accepts w iff there is some c
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

Equivalence of Verifiers and
Recognizers

Verifier Recognizer

Enforce a step count

What languages are verifiable?

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts ⟨w, c) ⟩ return true;
 }
 i++;
 }
}

What set of strings does mysteryFunction return true on?

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts ⟨w, c) ⟩ return true;
 }
 i++;
 }
}

What set of strings does mysteryFunction return true on?

Equivalence of Verifiers and
Recognizers

Verifier Recognizer

Try all certificates

Enforce a step count

Theorem: If L is a language, then there is
a verifier for L if and only if L ∈ RE.

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

We will try all possible certificates (values of c)

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

We will try all possible certificates (values of c)

Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩.
The function isInL tries all possible strings as
certificate, so it will eventually find c (or some other
certificate), see V accept ⟨w, c⟩, then return true.
Conversely, if isInL(w) returns true, then there was
some string c such that V accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
 i++;
 }
}

bool isInL(string w) {
 int i = 0;
 while (true) {
 for (each string c of length i) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
 i++;
 }
}

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for

the language L, show how to construct a verifier
V for L.

● The challenges:
● A recognizer M is not required to halt on all inputs. A

verifier V must always halt.
● A recognizer M takes in one single input. A verifier V

takes in two inputs.
● We’ll need to find a way of reconciling these

requirements.

Recall: If M is a recognizer for a language
L, then M accepts w iff w ∈ L.

Key insight: If M accepts a string w, it
always does so in a finite number of steps.

Idea: Adapt the verifier for A into a more
general construction that turns any

recognizer into a verifier by running it for a
fixed number of steps.

TM

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Consider the following program:

Notice that checkIsInL always halts, since each step takes
only finite time to complete. Next, notice that if there is a c
where checkIsInL(w, c) returns true, then M accepted w
after running for c steps, so w ∈ L. Conversely, if w ∈ L, then
M accepts w after some number of steps (call that number
c). Then checkIsInL(w, c) will run M on w for c steps,
watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

RE and Proofs

● Verifiers and recognizers give two different
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that
strings are in the language.
● If you know that some string w belongs to the

language and you have the proof of it, you can
convince someone else that w ∈ L.

● You can think of a recognizer as a device that
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.

RE and Proofs

● If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

● Intuitively, a language is not in RE if
there is no general way to prove that a
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!

Unsolvable Problems

Finding Non-RE Languages

Finding Non-RE Languages

● Remember RE but non-R (undecidable)
languages are those where we can reliably
identify strings in the language, but cannot
readily identify strings that are not in the
language.

● Non-RE languages will be those where we
cannot even readily identify strings that are in
the language!

● How might we find an example of a non-RE
language?

Languages, TMs, and TM Encodings

● What happens if we list off all Turing
machines, looking at how those TMs
behave when given other TM codes (as
strings, so various ⟨Mx⟩ strings) as input?

M
1

M
2

M
0

M
3

M
4

M
5

…

M
1

M
2

M
0

M
3

M
4

M
5

…

All Turing machines, listed
in some order.

All Turing machines, listed
in some order.

M
1

M
2

M
0

M
3

M
4

M
5

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

All files/strings of
TMs’ code, listed in

the same order.

All files/strings of
TMs’ code, listed in

the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A - E.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A - E.

What is (Mℒ 0)?
A. Σ*
B. {⟨M0⟩, ⟨M3⟩, ⟨M4⟩, … }

C. {⟨M0⟩}

D. {⟨M0⟩, ⟨M1⟩, ⟨M2⟩, ⟨M3⟩, …}
E. Something else.

What is (Mℒ 0)?
A. Σ*
B. {⟨M0⟩, ⟨M3⟩, ⟨M4⟩, … }

C. {⟨M0⟩}

D. {⟨M0⟩, ⟨M1⟩, ⟨M2⟩, ⟨M3⟩, …}
E. Something else.

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

ℒ(M0) = {⟨M0⟩,
⟨M3⟩, ⟨M4⟩, …}.

And we can’t see
the rest of the

table for M2, but it
accepts everything

so far, so it’s at
least possible that

its language is
(Mℒ 2) = Σ*.

ℒ(M0) = {⟨M0⟩,
⟨M3⟩, ⟨M4⟩, …}.

And we can’t see
the rest of the

table for M2, but it
accepts everything

so far, so it’s at
least possible that

its language is
(Mℒ 2) = Σ*.

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Aside: we aren’t really
worrying about the existence

of other strings that aren’t
TM code right now, but you

could also think of it
including those strings, so

(ℒ M0) = {⟨M0⟩, ⟨M3⟩, ⟨M4⟩,
…} {⋃ w | w is a string that
isn’t a TM’s code, and M0

accepts w}

Aside: we aren’t really
worrying about the existence

of other strings that aren’t
TM code right now, but you

could also think of it
including those strings, so

(ℒ M0) = {⟨M0⟩, ⟨M3⟩, ⟨M4⟩,
…} {⋃ w | w is a string that
isn’t a TM’s code, and M0

accepts w}

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Quick check:
How many of the TMs
on this chart so far do
NOT accept their own

code as a string?
(Enter a number.)

Quick check:
How many of the TMs
on this chart so far do
NOT accept their own

code as a string?
(Enter a number.)

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.

What are we going
to do next?

What are we going
to do next?

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept”
to “no” and vice-

versa

Flip all “accept”
to “no” and vice-

versa

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has this
behavior?

What TM has this
behavior?

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

Acc

No

…

No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

No

Acc

Acc

No

No

…

Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has this
behavior!

No TM has this
behavior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

“The language of all
TMs that do not accept
their own description.”

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0
w
1
w
2
w
3
w
4
w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∉ ℒ(M) }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉
ℒ(M) }

● That is, LD is the set of descriptions of
Turing machines that do not accept
themselves.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. Then there must
be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE.
Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Because ℒ(R) = LD, we know that a string
belongs to one set if and only if it

belongs to the other.

Because ℒ(R) = LD, we know that a string
belongs to one set if and only if it

belongs to the other.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2
)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

We've replaced the left-hand side of this
biconditional with an equivalent

statement.

We've replaced the left-hand side of this
biconditional with an equivalent

statement.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

A nice consequence of a universally-
quantified statement is that it should

work in all cases.

A nice consequence of a universally-
quantified statement is that it should

work in all cases.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some recognizer R such that (ℒ R) = LD.

Let M be an arbitrary TM. Since (ℒ R) = LD, we know that

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R). (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R). (2)

Since our choice of M was arbitrary, we see that statement (2)
holds for any TM M. In particular, this means that statement
(2) holds for the TM R, which tells us that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R). (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

● This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!

What This Means

● On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

● There's no automatic way to do math. There are
true statements that we can't prove.

● That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.

The Big Picture

DFA NFA

Regex

CFG Decider

Recog-
nizer

Verifier

REG

CFL
R

RE

Up to this point:
“Can we solve this problem?”

(Computability Theory)

Starting today:
“Ok, even if we can, we need to consider

whether the time/resources required
actually make practical/feasible sense.”

(Complexity Theory)

Up to this point:
“Can we solve this problem?”

(Computability Theory)

Starting today:
“Ok, even if we can, we need to consider

whether the time/resources required
actually make practical/feasible sense.”

(Complexity Theory)

Up to this point:
“Can we solve this problem?”

(Computability Theory)

Starting today:
“Ok, even if we can, we need to consider

whether the time/resources required
actually make practical/feasible sense.”

(Complexity Theory)

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153

