The Class RE

All Languages

The Class RE

- Languages *L* that are in RE, but not *R*, are those where:
 - We can build a TM M, where $\mathcal{L}(M) = L$
 - That TM *M* has the risk of getting stuck in an infinite loop for at least some input string(s)
 - But by definition of $\mathscr{L}(M)$, only input strings that are not in L are at risk of looping in M
- Just like the class Regular was defined in multiple ways (DFAs, NFAs, RegExes), today we'll learn <u>another way</u> to define this class RE!

Get ready to answer some questions in rapid-fire style! (about 10 seconds per question)

Definition:

A *k*-Clique is a set of *k* vertices of a graph that are all adjacent to each other (all possible edges between those *k* vertices are present in the graph).

QUICK REACTION: Does this graph contain a 4-clique?

Reflection:

Hm, that was kind of hard to assess in just 10 seconds! What if I select and highlight just some of the nodes for you, would that be a helpful hint?

WITH A "HINT"(?): Does this graph contain a 4-clique?

Reflection:

That was a terrible so-called "hint"! It didn't make the problem any easier to solve. :-(

WITH A *NEW* HINT: Does this graph contain a 4-clique?

Reflection:

The hint format (highlight some subset of 4 nodes) was a good format, but the hint is only helpful if the contents are the correct subset.

Discussion Question:

We found an effective, concise hint format for proving that a graph has a 4-Clique.

What about for proving a graph does **not** have a 4-Clique? What would an effective, concise hint format for that look like?

Key intuition behind our next way of defining RE:

A language L is in **RE** if, for any string w, **if** you know that $w \in L$, then there is some piece of evidence (a "hint") you could provide to make the problem of checking that fact very easy. More examples of helpful hints vs unhelpful hints

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

2	5	7	9	6	4	1	8	3
4	9	1	8	7	3	6	5	2
3	8	6	1	2	5	9	4	7
6	4	5	7	3	2	8	1	9
7	1	9	5	4	8	3	2	6
8	3	2	6	1	9	5	7	4
1	6	3	2	5	7	4	9	8
5	7	8	4	9	6	2	3	1
9	2	4	3	8	1	7	6	5

2	5	7	9	6	4	1	8	3	
4	9	1	8	7	3	6	5	2	
3	8	6	1	2	5	9	4	7	
6	4	5	7	3	2	8	1	9	
7	1	9	5	4	8	3	2	6	
8	3	2	6	1	9	5	7	4	
1	6	3	2	5	7	4	9	8	
5	7	8	4	9	6	2	3	1	
9	2	4	3	8	1	7	6	5	

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

1	1	7	1	6	1	1	1	1
1	1	1	1	1	3	1	5	2
3	1	1	1	1	5	9	1	7
6	1	5	1	3	1	8	1	9
1	1	1	1	4	1	1	2	1
8	1	2	1	1	1	5	1	4
1	1	3	2	1	7	1	1	8
5	7	1	4	1	1	1	1	1
1	1	4	1	8	1	7	1	1

1	1	7	1	6	1	1	1	F
1	1	1	1	1	3	1	5	2
3	1	1	1	1	5	9	1	7
6	1	5	1	3	1	8	1	9
1	1	1	1	4	1	1	2	1
8	1	2	1	1	1	5	1	4
1	1	3	2	1	7	1	1	8
5	7	1	4	1	1	1	1	1
1	1	4	1	8	1	7	1	1

m Son III

- In each of the preceding cases, we were given some problem and some evidence supporting the claim that the answer is "yes."
- Given correct/helpful evidence, we can quickly see that the answer is indeed "yes."
- Given incorrect/unhelpful evidence, we aren't immediately sure whether the answer is "yes."
 - Maybe there's no evidence saying that the answer is "yes," because the answer is no!
 - Or maybe there is some evidence, but just not the evidence we were given.
- Let's formalize this idea.

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:

- A string *c* where *V* accepts (*w*, *c*) is called a *certificate* for *w*.
 - This is the "evidence."
- Intuitively, what does this mean?

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:

- Some notes about *V*:
 - If V accepts $\langle w, c \rangle$, then we're guaranteed $w \in L$.
 - If V does not accept $\langle w, c \rangle$, then either
 - $w \in L$, but you gave the wrong c, or
 - $w \notin L$, so no possible *c* will work.

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:

- More notes about *V*:
 - Notice that *c* is existentially quantified.
 - Notice V is required to halt *always* (like a decider).

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:

- More notes about *V*:
 - Notice that $\mathscr{L}(V) \neq L$. (Good question to hold on to for a second: what is $\mathscr{L}(V)$?)
 - The job of V is just to check certificates, not to decide membership in L.

Verifiers

- A *verifier* for a language *L* is a TM *V* with the following properties:
 - V halts on all inputs.
 - For any string $w \in \Sigma^*$, the following is true:

 $w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle$

- A note about *c*:
 - Figuring out what would make a good certificate (should it be a number of steps to take, an equation-solving variable assignment, a set of graph nodes, an array of numbers to fill in a whole Sudoku board?) is custom work to do for each different language *L*.

• Let *L* be the following language:

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}</pre>
```

Does this always halt?

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
     }
    return n == 1;
}</pre>
```

For one given $\langle n \rangle \in L$ (say 11), how many different values of c will work to cause the verifier to accept?

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}</pre>
```

How many of these statements are true of $\mathscr{L}(V)$? • $\mathscr{L}(V) = L$ • $\mathscr{L}(V) \subseteq L$ • $L \subseteq \mathscr{L}(V)$

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
     }
    return n == 1;
}</pre>
```

• Let *L* be the following language:

 $L = \{ \langle G \rangle \mid G \text{ is a graph and } G \text{ has a} \\ \text{Hamiltonian path } \}$

- (A Hamiltonian path is a simple path that visits every node in the graph.)
- Let's see how to build a verifier for *L*.

Verification

Is there a simple path that goes through every node exactly once?

Verifier Example: Hamiltonian Path

• Let *L* be the following language:

 $L = \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian path } \}$

```
bool checkHamiltonian(Graph G, vector<Node> c) {
    if (c.size() != G.numNodes()) return false;
    if (containsDuplicate(c)) return false;
    for (size_t i = 0; i < c.size() - 1; i++) {
        if (!G.hasEdge(c[i], c[i+1])) return false;
    }
    return true;
}</pre>
```

- Do you see why $\langle G \rangle \in L$ iff there is a c where checkHamiltonian(G, c) returns true?
- Do you see why checkHamiltonian always halts?

Where We've Been

Where We're Going Today

Verifier for A_{TM} ?

• Consider A_{TM} :

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

- This is our standard example of an undecidable language. There's no way, in general, to tell whether a TM *M* will accept a string *w*.
- Although this language is undecidable, it's an RE language, and it's possible to build a verifier for it!

What would make a good certificate for a verifier for $A_{\rm TM}^{} ?$

• Consider A_{TM}:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

- This is a *canonical* example of an undecidable language. There's no way, in general, to tell whether a TM *M* will accept a string *w*.
- Although this language is undecidable, it's an RE language, and it's possible to build a verifier for it!

A Verifier for $\boldsymbol{A}_{\!TM}$

• Recall $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

```
bool checkWillAccept(TM M, string w, int c) {
   set up a simulation of M running on w;
   for (int i = 0; i < c; i++) {
      simulate the next step of M running on w;
   }
   return whether M is in an accepting state;
}</pre>
```

- Do you see why M accepts w iff there is some c such that checkWillAccept(M, w, c) returns true?
- Do you see why checkWillAccept always halts?

Equivalence of Verifiers and Recognizers

What languages are verifiable?

```
Let V be a verifier for a language L. Consider the following
               function given in pseudocode:
bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
              if (V accepts \langle w, c \rangle) return true;
        i++;
What set of strings does mysteryFunction return true on?
```

Equivalence of Verifiers and Recognizers

Theorem: If L is a language, then there is a verifier for L if and only if $L \in \mathbf{RE}$.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (*values of c*)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (*values of c*)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (*values of c*)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

3

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If there is a verifier V for a language L, then $L \in \mathbf{RE}$.
- **Proof goal:** Given a verifier V for a language L, find a way to construct a recognizer M for L.

- **Theorem:** If V is a verifier for L, then $L \in \mathbf{RE}$.
- **Proof sketch:** Consider the following program:

```
bool isInL(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
            if (V accepts 〈w, c〉) return true;
            }
            i++;
        }
}
```

If $w \in L$, there is some $c \in \Sigma^*$ where V accepts $\langle w, c \rangle$. The function isInL tries all possible strings as certificate, so it will eventually find c (or some other certificate), see V accept $\langle w, c \rangle$, then return true. Conversely, if isInL(w) returns true, then there was some string c such that V accepted $\langle w, c \rangle$, so $w \in L$.

- **Theorem:** If $L \in \mathbf{RE}$, then there is a verifier for L.
- **Proof goal:** Beginning with a recognizer *M* for the language *L*, show how to construct a verifier *V* for *L*.
- The challenges:
 - A recognizer M is not required to halt on all inputs. A verifier V must always halt.
 - A recognizer M takes in one single input. A verifier V takes in two inputs.
- We'll need to find a way of reconciling these requirements.

Recall: If M is a recognizer for a language L, then M accepts w iff $w \in L$.

Key insight: If *M* accepts a string *w*, it always does so in a finite number of steps.

Idea: Adapt the verifier for A_{TM} into a more general construction that turns any recognizer into a verifier by running it for a fixed number of steps.

- **Theorem:** If $L \in \mathbf{RE}$, then there is a verifier for L.
- **Proof sketch:** Consider the following program:

```
bool checkIsInL(string w, int c) {
   set up a simulation of M running on w;
   for (int i = 0; i < c; i++) {
      simulate the next step of M running on W;
   }
   return whether M is in an accepting state;
}</pre>
```

Notice that checkIsInL always halts, since each step takes only finite time to complete. Next, notice that if there is a c where checkIsInL(w, c) returns true, then M accepted w after running for c steps, so $w \in L$. Conversely, if $w \in L$, then M accepts w after some number of steps (call that number c). Then checkIsInL(w, c) will run M on w for c steps, watch M accept w, then return true.

RE and Proofs

- Verifiers and recognizers give two different perspectives on the "proof" intuition for **RE**.
- Verifiers are explicitly built to check proofs that strings are in the language.
 - If you know that some string w belongs to the language and you have the proof of it, you can convince someone else that $w \in L$.
- You can think of a recognizer as a device that "searches" for a proof that $w \in L$.
 - If it finds it, great!
 - If not, it might loop forever.

RE and Proofs

- If the **RE** languages represent languages where membership can be proven, what does a non-**RE** language look like?
- Intuitively, a language is *not* in **RE** if there is no general way to prove that a given string $w \in L$ actually belongs to L.
- In other words, even if you knew that a string was in the language, you may never be able to convince anyone of it!

Unsolvable Problems

Finding Non-**RE** Languages

Finding Non-**RE** Languages

- Remember **RE** but non-**R** (undecidable) languages are those where we can reliably identify strings in the language, but cannot readily identify strings that are *not* in the language.
- Non-RE languages will be those where we cannot even readily identify strings that *are* in the language!
- How might we find an example of a non-RE language?

Languages, TMs, and TM Encodings

• What happens if we list off all Turing machines, looking at how those TMs behave when given other TM codes (as strings, so various $\langle M_x \rangle$ strings) as input?

	$\langle {\sf M_0} \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_{3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	• • •
M_1							
M_2							
M_3							
M_4							
M_5							

	$\langle {\sf M_0} \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	••••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2							
M_3							
M_4							
M_5							

		$\langle M_0 \rangle$	$\langle {\sf M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M_5} \rangle$	
\mathbf{N}	1 0	Acc	No	No	Acc	Acc	No	•••
\mathbf{N}	1 1	Acc	Acc	Acc	Acc	Acc	Acc	• • •
\mathbf{N}	1 2	Acc	Acc	Acc	Acc	Acc	Acc	
\mathbf{N}	1 ₃							
\mathbf{N}	1 ₄							
\mathbf{N}	1 ₅							
•	• •							

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle {\sf M_4} \rangle$	$\langle {\sf M}_{\rm 5} angle$	••••	
M_0	Acc	No	No	Acc	Acc	No		
M_1	Acc	Acc	Acc	Acc	Acc	Acc		
M_2	Acc	Acc	Acc	Acc	Acc		V	What is $\mathscr{L}(\mathbf{M}_{0})$?
M_3						A. Z	∑* ∫ / \ /	$\langle \Lambda I \rangle \langle \Lambda I \rangle$
M_4	-					D. С	ί (Μ _ι	$_{0}\rangle, \langle M_{3}\rangle, \langle M_{4}\rangle, \dots \}$
M_5						D	{ (M ₀	$\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \ldots \}$
						E. 9	Som	ething else.

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A - E**.

	$\langle {\sf M_0} \rangle$	$\langle M_{1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3			1	1	1		
M_4							
M_5							

$$\begin{aligned} \mathscr{L}(M_0) &= \{ \langle M_0 \rangle, \\ \langle M_3 \rangle, \langle M_4 \rangle, \ldots \}. \\ \text{And we can't see} \\ \text{the rest of the} \\ \text{table for } M_2, \text{ but it} \\ \text{accepts everything} \\ \text{so far, so it's at} \\ \text{least possible that} \\ \text{its language is} \\ \mathscr{L}(M_2) &= \Sigma^*. \end{aligned}$$

	$\langle {\sf M_0} \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_{4} \rangle$	$\langle {\sf M}_{\rm 5} angle$		
M_0	Acc	No	No	Acc	Acc	No		
M_1	Acc	Acc	Acc	Acc	WO			ve aren't really bout the existence
M_2	Acc	Acc	Acc	Acc	0	f oth	ier s	trings that aren't
M_3						CO	uld a	right now, but you also think of it
M_4								those strings, so $\{\langle M_0 \rangle, \langle M_3 \rangle, \langle M_4 \rangle, \}$
M_5					•••	.} ∪ ⋅	{ <i>w</i>	w is a string that
						511 l		A's code, and M ₀ cepts w}

	$\langle {\sf M_0} \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M_5} \rangle$	
M_{0}	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4				1			
M_5							

. . .

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5							

. . .

	$\langle {\sf M_0} \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M_5} \rangle$	
M_0	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	••••
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	••••

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M_0	Acc	No	No	Acc	Acc	No	Quick check:
M_1	Acc	Acc	Acc	Acc	Acc	Acc	How many of the TMs on this chart so far do
M_2	Acc	Acc	Acc	Acc	Acc	Acc	NOT accept their own code as a string?
M_3	No	Acc	Acc	No	Acc	Acc	(Enter a number.)
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **a number**.

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	• • •
							• • •

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$		
M_0	Acc	No	No	Acc	Acc	No	•••	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••	
M_3	No	Acc	Acc	No	Acc	Acc	•••	
M_4	Acc	No	Acc	No	Acc	No	•••	What are we going
M_5	No	No	Acc	Acc	No	No	•••	to do next?
						• • •		

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **your answer**.

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••				• • •		

Acc Acc Acc No Acc No ...

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_{4} \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	• • •						

	$\langle M_0 \rangle$	$\langle M_{1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	• • •						

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_{4} \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••						

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••						

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••						

	$\langle M_0 \rangle$	$\langle M_{1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle M_{4} \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••		•••	•••			

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	• • •						

	$\langle {\sf M_0} \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	• • •						

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle {\sf M_3} \rangle$	$\langle {\sf M_4} \rangle$	$\langle {\sf M}_{\rm 5} \rangle$		
M_0	Acc	No	No	Acc	Acc	No		
M_1	Acc	Acc	Acc	Acc	Acc	Acc	•••	
M_2	Acc	Acc	Acc	Acc	Acc	Acc		No TM has t
M_3	No	Acc	Acc	No	Acc	Acc	•••	behavior
M_4	Acc	No	Acc	No	Acc	No		
M_5	No	No	Acc	Acc	No	No	•••	
		•••			•••			
	No	No	No	Acc	No	Acc		

	$\langle M_0 \rangle$	$\langle {\rm M_1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_{4} \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	• • •						

	$\langle {\sf M_0} \rangle$	$\langle M_{1} \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	
	•••						

No No No Acc No Acc ...

	$\langle {\sf M_0} \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	• • •
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	•••
M_4	Acc	No	Acc	No	Acc	No	• • •
M_5	No	No	Acc	Acc	No	No	• • •
	• • •						

No No No Acc No Acc

"The language of all TMs that do not accept their own description."

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	• • •
M_2	Acc	Acc	Acc	Acc	Acc	Acc	• • •
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	•••
M_5	No	No	Acc	Acc	No	No	•••
	•••				•••	• • •	

No No No Acc No Acc

 $\{ \langle M \rangle | M \text{ is a TM that}$ does not accept $\langle M \rangle$

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle {\sf M}_{\rm 5} angle$	
M_0	Acc	No	No	Acc	Acc	No	•••
M_1	Acc	Acc	Acc	Acc	Acc	Acc	
M_2	Acc	Acc	Acc	Acc	Acc	Acc	•••
M_3	No	Acc	Acc	No	Acc	Acc	
M_4	Acc	No	Acc	No	Acc	No	
M_5	No	No	Acc	Acc	No	No	• • •
	•••	• • •	• • •	• • •	• • •		

No No No Acc No Acc

{ (M) | M is a TMand $(M) \notin \mathcal{L}(M)$ }

Diagonalization Revisited

The *diagonalization language*, which we denote L_p, is defined as

$L_{D} = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathscr{L}(M) \}$

• That is, $L_{\rm D}$ is the set of descriptions of Turing machines that do not accept themselves.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$. **Proof:** By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

Theorem: $L_{\rm D} \notin \mathbf{RE}$. **Proof:** By contradiction: assume

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_{D'}$, we know that

 $\langle M \rangle \in \underline{L}_{\mathrm{D}} \text{ iff } \langle M \rangle \in \mathscr{L}(\mathbf{R}).$ (1)

Because $\mathcal{L}(R) = L_D$, we know that a string belongs to one set if and only if it belongs to the other.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathcal{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M)$ iff $\langle M \rangle \in \mathscr{L}(R)$. (2)

We've replaced the left-hand side of this biconditional with an equivalent statement.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

A nice consequence of a universallyquantified statement is that it should work in all cases.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R)$ iff $\langle R \rangle \in \mathscr{L}(R)$. (3)

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R)$ iff $\langle R \rangle \in \mathscr{L}(R)$. (3)

This is clearly impossible.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R)$ iff $\langle R \rangle \in \mathscr{L}(R)$. (3)

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R).$ (3)

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{\rm D} \notin \mathbf{RE}$.

Theorem: $L_{\rm D} \notin \mathbf{RE}$.

Proof: By contradiction; assume that $L_{\rm D} \in \mathbf{RE}$. Then there must be some recognizer R such that $\mathscr{L}(R) = L_{\rm D}$.

Let *M* be an arbitrary TM. Since $\mathscr{L}(R) = L_D$, we know that

 $\langle M \rangle \in L_{\rm D} \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (1)

From the definition of L_{D} , we see that $\langle M \rangle \in L_{D}$ iff $\langle M \rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

 $\langle M \rangle \notin \mathscr{L}(M) \text{ iff } \langle M \rangle \in \mathscr{L}(R).$ (2)

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

 $\langle R \rangle \notin \mathscr{L}(R) \quad \text{iff} \quad \langle R \rangle \in \mathscr{L}(R).$ (3)

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{\rm D} \notin \mathbf{RE}$.

What This Means

• On a deeper philosophical level, the fact that non-**RE** languages exist supports the following claim:

There are statements that are true but not provable.

- Intuitively, given any non-**RE** language, there will be some string in the language that *cannot* be proven to be in the language.
- This result can be formalized as a result called *Gödel's incompleteness theorem*, one of the most important mathematical results of all time.
- Want to learn more? Take Phil 152 or CS154!

What This Means

• On a more philosophical note, you could interpret the previous result in the following way:

There are inherent limits about what mathematics can teach us.

- There's no automatic way to do math. There are true statements that we can't prove.
- That doesn't mean that mathematics is worthless. It just means that we need to temper our expectations about it.

Up to this point: "Can we solve this problem?" (Computability Theory)

Up to this point: "Can we solve this problem?" (Computability Theory)

Up to this point: "Can we solve this problem?" (Computability Theory)

Starting today: "Ok, even if we *can*, we need to consider whether the time/resources required actually make practical/feasible sense." (Complexity Theory)

Where We've Been

- The class ${\bf R}$ represents problems that can be solved by a computer.
- The class **RE** represents problems where "yes" answers can be verified by a computer.

Where We're Going

- The class \mathbf{P} represents problems that can be solved *efficiently* by a computer.
- The class **NP** represents problems where "yes" answers can be verified *efficiently* by a computer.