The Class RE

The Story So Far

The Class RE

- Languages L that are in $R E$, but not R, are those where:
- We can build a TM M, where $\mathscr{L}(M)=L$
- That TM M has the risk of getting stuck in an infinite loop for at least some input string(s)
- But by definition of $\mathscr{L}(M)$, only input strings that are not in L are at risk of looping in M
- Just like the class Regular was defined in multiple ways (DFAs, NFAs, RegExes), today we'll learn another way to define this class RE!

Get ready to answer some questions in rapid-fire style! (about 10 seconds per question)

Definition:

A \boldsymbol{k}-Clique is a set of k vertices of a graph that are all adjacent to each other (all possible edges between those k vertices are present in the graph).
has a 4-Clique:
does not have a 4-Clique (has a 3-Clique though):

Reflection:

Hm, that was kind of hard to assess in just 10 seconds! What if I select and highlight just some of the nodes for you, would that be a helpful hint?

Reflection:

That was a terrible so-called "hint"! It didn't make the problem any easier to solve. :-(

WITH A NEW HINT: Does this graph contain a 4-clique?

Reflection:

The hint format (highlight some subset of 4 nodes) was a good format, but the hint is only helpful if the contents are the correct subset.

Discussion Question:

We found an effective, concise hint format for proving that a graph has a 4-Clique.

What about for proving a graph does not have a 4-Clique? What would an effective, concise hint format for that look like?

Key intuition behind our next way of defining RE:

A language L is in $\mathbf{R E}$ if, for any string w, if
you know that $w \in L$, then there is some piece of evidence (a "hint") you could provide to make the problem of checking that fact very easy.

More examples of helpful hints

VS
unhelpful hints

Verification

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

Does this Sudoku puzzle
have a solution?

Verification

2	5	$\mathbf{7}$	9	$\mathbf{6}$	4	$\mathbf{1}$	8	3
4	9	1	8	7	$\mathbf{3}$	6	$\mathbf{5}$	$\mathbf{2}$
$\mathbf{3}$	8	6	$\mathbf{1}$	2	$\mathbf{5}$	$\mathbf{9}$	4	$\mathbf{7}$
$\mathbf{6}$	4	$\mathbf{5}$	7	$\mathbf{3}$	2	$\mathbf{8}$	1	$\mathbf{9}$
$\mathbf{7}$	$\mathbf{1}$	$\mathbf{9}$	5	4	8	3	$\mathbf{2}$	6
$\mathbf{8}$	3	$\mathbf{2}$	6	$\mathbf{1}$	9	$\mathbf{5}$	7	$\mathbf{4}$
$\mathbf{1}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{7}$	4	9	$\mathbf{8}$
$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{9}$	6	2	3	1
9	2	$\mathbf{4}$	3	$\mathbf{8}$	1	$\mathbf{7}$	6	5

Does this Sudoku puzzle have a solution?

Verification

2	5	$\mathbf{7}$	9	$\mathbf{6}$	4	$\mathbf{1}$	8	3
4	9	1	8	$\mathbf{7}$	$\mathbf{3}$	6	$\mathbf{5}$	$\mathbf{2}$
$\mathbf{3}$	8	6	$\mathbf{1}$	2	$\mathbf{5}$	$\mathbf{9}$	4	$\mathbf{7}$
$\mathbf{6}$	4	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{3}$	2	$\mathbf{8}$	1	$\mathbf{9}$
$\mathbf{7}$	$\mathbf{1}$	9	5	4	8	3	$\mathbf{2}$	6
$\mathbf{8}$	3	$\mathbf{2}$	6	$\mathbf{1}$	9	$\mathbf{5}$	7	$\mathbf{4}$
$\mathbf{1}$	6	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{7}$	4	9	$\mathbf{8}$
$\mathbf{5}$	$\mathbf{7}$	8	$\mathbf{4}$	9	6	2	3	1
9	$\mathbf{2}$	$\mathbf{4}$	3	$\mathbf{8}$	1	$\mathbf{7}$	6	5

Does this Sudoku puzzle have a solution?

Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)

Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)

Verification

Does this graph have a Hamiltonian path (a simple path that passes
through every node exactly once?)

Verification

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

Does this Sudoku puzzle
have a solution?

Verification

1	1	7	1	6	1	1	1	1
1	1	1	1	1	3	1	5	2
3	1	1	1	1	5	9	1	7
6	1	5	1	3	1	8	1	9
1	1	1	1	4	1	1	2	1
8	1	2	1	1	1	5	1	4
1	1	3	2	1	7	1	1	8
5	7	1	4	1	1	1	1	1
1	1	4	1	8	1	7	1	1

Does this Sudoku puzzle have a solution?

Does this Sudoku puzzle have a solution?

Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)

Verification

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)

Does this graph have a Hamiltonian path (a simple path that passes through every node exactly once?)

Verification

- In each of the preceding cases, we were given some problem and some evidence supporting the claim that the answer is "yes."
- Given correct/helpful evidence, we can quickly see that the answer is indeed "yes."
- Given incorrect/unhelpful evidence, we aren't immediately sure whether the answer is "yes."
- Maybe there's no evidence saying that the answer is "yes," because the answer is no!
- Or maybe there is some evidence, but just not the evidence we were given.
- Let's formalize this idea.

Verifiers

- A verifier for a language L is a TM V with the following properties:
- V halts on all inputs.
- For any string $w \in \Sigma^{*}$, the following is true:

$$
w \in L \leftrightarrow \exists c \in \Sigma^{*} . V \text { accepts }\langle w, c\rangle
$$

- A string c where V accepts $\langle w, c\rangle$ is called a certificate for w.
- This is the "evidence."
- Intuitively, what does this mean?

Deciders and Verifiers

Verifiers

- A verifier for a language L is a TM V with the following properties:
- V halts on all inputs.
- For any string $w \in \Sigma^{*}$, the following is true:

$w \in L \leftrightarrow \exists c \in \Sigma^{*} . V$ accepts $\langle w, c\rangle$

- Some notes about V :
- If V accepts $\langle w, c\rangle$, then we're guaranteed $w \in L$.
- If V does not accept $\langle w, c\rangle$, then either
- $w \in L$, but you gave the wrong c, or
- $w \notin L$, so no possible c will work.

Verifiers

- A verifier for a language L is a TM V with the following properties:
- V halts on all inputs.
- For any string $w \in \Sigma^{*}$, the following is true:

$w \in L \leftrightarrow \exists c \in \Sigma^{*} . V$ accepts $\langle w, c\rangle$

- More notes about V :
- Notice that c is existentially quantified.
- Notice V is required to halt always (like a decider).

Verifiers

- A verifier for a language L is a TM V with the following properties:
- V halts on all inputs.
- For any string $w \in \Sigma^{*}$, the following is true:

$w \in L \leftrightarrow \exists c \in \Sigma^{*} . V$ accepts $\langle w, c\rangle$

- More notes about V :
- Notice that $\mathscr{L}(V) \neq L$. (Good question to hold on to for a second: what is $\mathscr{L}(V)$?)
- The job of V is just to check certificates, not to decide membership in L.

Verifiers

- A verifier for a language L is a TM V with the following properties:
- V halts on all inputs.
- For any string $w \in \Sigma^{*}$, the following is true:

$$
w \in L \leftrightarrow \exists c \in \Sigma^{*} . V \text { accepts }\langle w, c\rangle
$$

- A note about c :
- Figuring out what would make a good certificate (should it be a number of steps to take, an equation-solving variable assignment, a set of graph nodes, an array of numbers to fill in a whole Sudoku board?) is custom work to do for each different language L.

Some Verifiers

- Let L be the following language:
$L=\{\langle n\rangle \mid n \in \mathbb{N}$ and the hailstone sequence
terminates for $n\}$

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```


Some Verifiers

Does this always halt?
$L=\{\langle n\rangle \mid n \in \mathbb{N}$ and the hailstone sequence
terminates for $n\}$

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```


Some Verifiers

For one given $\langle n\rangle \in L$ (say 11), how many different values of c will work to cause the verifier to accept?

$$
\begin{gathered}
L=\{\langle n\rangle \mid n \in \mathbb{N} \text { and the hailstone sequence } \\
\text { terminates for } n\}
\end{gathered}
$$

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```

How many of these statements are true of $\mathscr{L}(V)$?

- $\mathscr{L}(V)=L$
- $\mathscr{L}(V) \subseteq L$
- $L \subseteq \mathscr{L}(V)$

$$
\begin{gathered}
L=\{\langle n\rangle \mid n \in \mathbb{N} \text { and the hailstone sequence } \\
\text { terminates for } n\}
\end{gathered}
$$

```
bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}
```


Some Verifiers

- Let L be the following language:

$$
\begin{gathered}
L=\{\langle G\rangle \mid G \text { is a graph and } G \text { has a } \\
\text { Hamiltonian path }\}
\end{gathered}
$$

- (A Hamiltonian path is a simple path that visits every node in the graph.)
- Let's see how to build a verifier for L.

Verification

Is there a simple path that goes through every node exactly once?

Verifier Example: Hamiltonian Path

- Let L be the following language:
$L=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian path $\}$

```
bool checkHamiltonian(Graph G, vector<Node> c) {
    if (c.size() != G.numNodes()) return false;
    if (containsDuplicate(c)) return false;
    for (size_t i = 0; i < c.size() - 1; i++) {
        if (!G.hasEdge(c[i], c[i+1])) return false;
    }
    return true;
}
```

- Do you see why $\langle G\rangle \in L$ iff there is a c where checkHamiltonian(G, c) returns true?
- Do you see why checkHamiltonian always halts?

Where We've Been

Where We're Going Today

Verifier for A_{TM} ?

- Consider $\mathrm{A}_{\text {тм }}$:

$$
\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a TM and } M \text { accepts } w\} .
$$

- This is our standard example of an undecidable language. There's no way, in general, to tell whether a TM M will accept a string w.
- Although this language is undecidable, it's an RE language, and it's possible to build a verifier for it!

What would make a good certificate for a verifier for A_{TM} ?

- Consider $\mathrm{A}_{\text {тм }}$:

$$
\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { accepts } w\} .
$$

- This is a canonical example of an undecidable language. There's no way, in general, to tell whether a TM M will accept a string w.
- Although this language is undecidable, it's an RE language, and it's possible to build a verifier for it!

A Verifier for $\mathrm{A}_{\text {TM }}$

- Recall $\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$

```
bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}
```

- Do you see why M accepts w iff there is some c such that checkWillAccept (M, w, c) returns true?
- Do you see why checkWillAccept always halts?

Equivalence of Verifiers and Recognizers

What languages are verifiable?

```
    Let V be a verifier for a language L. Consider the following
```

 function given in pseudocode:
 bool mysteryFunction(string w) \{
int $\mathrm{i}=0$;
while (true) \{
for (each string c of length i) \{
if (V accepts $\langle W, c\rangle$) return true;
\}
i++;
\}
\}
What set of strings does mysteryFunction return true on?

Equivalence of Verifiers and Recognizers

Theorem: If L is a language, then there is a verifier for L if and only if $L \in \mathbf{R E}$.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

\square $a b$
ba
bb
aaa

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

ε	a	b	aa	$a b$	ba	bb	aaa	aab	aba	abb	baa

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

\square
$a b$
ba
bb
aaa

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

Verifiers and RE

- Theorem: If there is a verifier V for a language L, then $L \in \mathbf{R E}$.
- Proof goal: Given a verifier V for a language L, find a way to construct a recognizer M for L.

We will try all possible certificates (values of c)

\square $a b$ \square

baa

Verifiers and RE

- Theorem: If V is a verifier for L, then $L \in \mathbf{R E}$.
- Proof sketch: Consider the following program:

```
bool isInL(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
            if (V accepts \langleW, c\rangle) return true;
        }
        i++;
    }
}
```

If $w \in L$, there is some $c \in \Sigma^{*}$ where V accepts $\langle w, c\rangle$. The function isInL tries all possible strings as certificate, so it will eventually find c (or some other certificate), see V accept $\langle w, c\rangle$, then return true. Conversely, if isInL(w) returns true, then there was some string c such that V accepted $\langle w, c\rangle$, so $w \in L$.

Verifiers and RE

- Theorem: If $L \in \mathbf{R E}$, then there is a verifier for L.
- Proof goal: Beginning with a recognizer M for the language L, show how to construct a verifier V for L.
- The challenges:
- A recognizer M is not required to halt on all inputs. A verifier V must always halt.
- A recognizer M takes in one single input. A verifier V takes in two inputs.
- We'll need to find a way of reconciling these requirements.

Recall: If M is a recognizer for a language L, then M accepts w iff $w \in L$.

Key insight: If M accepts a string w, it always does so in a finite number of steps.

Idea: Adapt the verifier for A_{TM} into a more general construction that turns any recognizer into a verifier by running it for a fixed number of steps.

Verifiers and RE

- Theorem: If $L \in \mathbf{R E}$, then there is a verifier for L.
- Proof sketch: Consider the following program:

```
bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
}
```

Notice that checkIsInL always halts, since each step takes only finite time to complete. Next, notice that if there is a c where checkIsInL(w, c) returns true, then M accepted w after running for c steps, so $w \in L$. Conversely, if $w \in L$, then M accepts w after some number of steps (call that number $c)$. Then checkIsInL(w, c) will run M on w for c steps, watch M accept w, then return true.

RE and Proofs

- Verifiers and recognizers give two different perspectives on the "proof" intuition for RE.
- Verifiers are explicitly built to check proofs that strings are in the language.
- If you know that some string w belongs to the language and you have the proof of it, you can convince someone else that $w \in L$.
- You can think of a recognizer as a device that "searches" for a proof that $w \in L$.
- If it finds it, great!
- If not, it might loop forever.

RE and Proofs

- If the RE languages represent languages where membership can be proven, what does a non-RE language look like?
- Intuitively, a language is not in RE if there is no general way to prove that a given string $w \in L$ actually belongs to L.
- In other words, even if you knew that a string was in the language, you may never be able to convince anyone of it!

Unsolvable Problems

Finding Non-RE Languages

Finding Non-RE Languages

- Remember RE but non-R (undecidable) languages are those where we can reliably identify strings in the language, but cannot readily identify strings that are not in the language.
- Non-RE languages will be those where we cannot even readily identify strings that are in the language!
- How might we find an example of a non-RE language?

Languages, TMs, and TM Encodings

- What happens if we list off all Turing machines, looking at how those TMs behave when given other TM codes (as strings, so various $\left(\mathrm{M}_{\mathrm{x}}\right\rangle$ strings) as input?

M_{0}
M_{1}
M_{2}
M_{3}
M_{4}
M_{5}
\ldots

$\quad\left\langle M_{0}\right\rangle\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle\left\langle M_{5}\right\rangle \ldots$
M_{0}
M_{1}
M_{2}
M_{3}
M_{4}
M_{5}
\ldots

	$\left\langle M_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	<M3 ${ }^{\text {¢ }}$	<M ${ }_{4}$ 〉	(M ${ }_{5}$)		
M	Acc	No	No	Acc	Acc	No	..	$\begin{gathered} \mathscr{L}\left(\mathrm{M}_{0}\right)=\left\{\left\langle\mathrm{M}_{0}\right\rangle,\right. \\ \left.\left\langle\mathrm{M}_{3}\right\rangle,\left\langle\mathrm{M}_{4}\right\rangle, \ldots\right\} . \end{gathered}$
M	Acc	Acc	Acc	Acc	Acc	Acc	..	And we can't see
M	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	the rest of the table for M_{2}, but it
M_{3}								accepts everything so far, so it's at
M 4 M								least possible that its language is $\mathscr{L}\left(\mathrm{M}_{2}\right)=\Sigma^{*}$.

	$\left\langle\mathrm{M}_{0}\right\rangle$	$\left\langle\mathrm{M}_{1}\right\rangle$	$\left\langle\mathrm{M}_{2}\right\rangle$	$\left\langle\mathrm{M}_{3}\right\rangle$	$\left\langle\mathrm{M}_{4}\right\rangle$	$\left\langle M_{5}\right\rangle$	
M_{0}	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Aside: we aren't really worrying about the existence of other strings that aren't TM code right now, but you could also think of it including those strings, so $\mathscr{L}\left(\mathrm{M}_{0}\right)=\left\{\left\langle\mathrm{M}_{0}\right\rangle,\left\langle\mathrm{M}_{3}\right\rangle,\left\langle\mathrm{M}_{4}\right\rangle\right.$, $\ldots\} \cup\{w \mid w$ is a string that isn't a TM's code, and M_{0} accepts $w\}$		
M_{2}	Acc	Acc	Acc	Acc			
$M 3$ $M 4$							
M_{5}							

	$\left\langle M_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	<M ${ }_{2}$ 〉	<M ${ }_{3}$ >	<M ${ }_{4}$ 〉	<M ${ }_{5}$)	
M	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
$M 4$ M							

	<M ${ }_{0}$ 〉	$\left\langle\mathrm{M}_{1}\right\rangle$	$\left\langle\mathrm{M}_{2}\right\rangle$	<M ${ }_{3}$)	<M $\left.{ }_{4}\right\rangle$	<M $\left.{ }_{5}\right\rangle$	
M	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
M	Acc	No	Acc	No	Acc	No	
M_{5}							

$\left\langle M_{0}\right\rangle\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle\left\langle M_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No

	<Mo ${ }^{\text {¢ }}$	$\left\langle\mathrm{M}_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M ${ }^{\text {¢ }}$	<M ${ }_{4}$ 〉	<Ms ${ }^{\text {¢ }}$	
M	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M	No	Acc	Acc	No	Acc	Acc	
M	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
...	\ldots	...	\ldots	\ldots	\cdots	\ldots	

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	Acc	Acc	Acc	No	Acc	No	\ldots

	(O_{0} 〉	$\left\langle\mathrm{M}_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M $\left.{ }_{3}\right\rangle$	<M $\left.{ }_{4}\right\rangle$	$\left\langle\mathrm{M}_{5}\right\rangle$	\ldots	
M_{0}	Acc	No	No	Acc	Acc	No	\ldots	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	...	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots	Flip all "accept"
M_{4}	Acc	No	Acc	No	Acc	No	\ldots	to "no" and viceversa
M_{5}	No	No	Acc	Acc	No	No	\ldots	
...	...	\ldots	\cdots	\ldots	\ldots	\ldots	..	
	No	No	No	Acc	No	Acc	\ldots	

	$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

	$\left\langle\mathrm{M}_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M $\left.{ }_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	$\left\langle\mathrm{M}_{5}\right\rangle$	\ldots	
M_{0}	Acc	No	No	Acc	Acc	No	\ldots	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	...	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{3}	No	Acc	Acc	No	Acc	Acc	..	What TM has this
M_{4}	Acc	No	Acc	No	Acc	No	\ldots	
M_{5}	No	No	Acc	Acc	No	No	\ldots	
...	\ldots	\ldots	\ldots	\ldots	\ldots	
	No	No	No	Acc	No	Acc	.. ${ }^{4}$	

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

	$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

	$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle$	$\left\langle\mathrm{M}_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

$\left\langle M_{0}\right\rangle$	$\left\langle M_{1}\right\rangle\left\langle M_{2}\right\rangle\left\langle M_{3}\right\rangle\left\langle M_{4}\right\rangle\left\langle M_{5}\right\rangle$	\ldots				
M_{0}	Acc	No	No	Acc Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc
M_{4}	Acc	No	Acc	No	Acc	No
M_{5}	No	No	Acc	Acc	No	No
	\ldots					
\ldots						
	No	No	No	Acc	No	Acc

	$\left\langle\mathrm{M}_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M ${ }^{\text {3 }}$)	<M ${ }_{4}$ 〉	<M ${ }_{5}$ 〉	
M	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
M_{4}	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
...	\ldots	\ldots	\cdots	\ldots	\ldots		
	No	No	No	Acc	No	Acc	

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

	$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

	$\left\langle\mathrm{M}_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M $\left.{ }_{3}\right\rangle$	〈M ${ }_{4}$ 〉	<M ${ }_{5}$)	\ldots	
M_{0}	Acc	No	No	Acc	Acc	No	\ldots	
M	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	No TM has this
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots	
M_{4}	Acc	No	Acc	No	Acc	No	\ldots	
M_{5}	No	No	Acc	Acc	No	No	\ldots	
...	...	\ldots	...	\ldots	\ldots	\ldots	\ldots	
	No	No	No	Acc	No	Acc	$\ldots{ }^{4}$	

	$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots					
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

	<M ${ }_{0}$)	$\left\langle M_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M ${ }^{\text {3 }}$,	<M ${ }_{4}$ 〉	$\left\langle\mathrm{M}_{5}\right\rangle$	
M_{0}	Acc	No	No	Acc	Acc	No	
M	Acc	Acc	Acc	Acc	Acc	Acc	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	
M_{3}	No	Acc	Acc	No	Acc	Acc	
M_{4}	Acc	No	Acc	No	Acc	No	
M_{5}	No	No	Acc	Acc	No	No	
,	\ldots	..	\ldots	\ldots	\ldots	\cdots	
	No	No	No	Acc	No	Acc	

$\left\langle\mathrm{M}_{0}\right\rangle\left\langle\mathrm{M}_{1}\right\rangle\left\langle\mathrm{M}_{2}\right\rangle\left\langle\mathrm{M}_{3}\right\rangle\left\langle\mathrm{M}_{4}\right\rangle\left\langle\mathrm{M}_{5}\right\rangle$	\ldots						
M_{0}	Acc	No	No	Acc	Acc	No	\ldots
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots
M_{4}	Acc	No	Acc	No	Acc	No	\ldots
M_{5}	No	No	Acc	Acc	No	No	\ldots
\ldots							
	No	No	No	Acc	No	Acc	\ldots

"The language of all TMs that do not accept their own description."

	$\left\langle\mathrm{M}_{0}\right\rangle$	$\left\langle\mathrm{M}_{1}\right\rangle$	$\left\langle\mathrm{M}_{2}\right\rangle$	$\left\langle\mathrm{M}_{3}\right\rangle$	$\left\langle\mathrm{M}_{4}\right\rangle$	$\left\langle\mathrm{M}_{5}\right\rangle$	\ldots	$\{\langle M\rangle \mid M$ is a TM tha does not accept $\langle M\rangle\}$
M_{0}	Acc	No	No	Acc	Acc	No	\ldots	
M_{1}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots	
M_{4}	Acc	No	Acc	No	Acc	No	\ldots	
M_{5}	No	No	Acc	Acc	No	No	\ldots	
\ldots	. \cdot	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	
	No	No	No	Acc	No	Acc		

	$\left\langle M_{0}\right\rangle$	$\left\langle M_{1}\right\rangle$	<M $\left.{ }_{2}\right\rangle$	<M ${ }^{\text {b }}$,	<M ${ }_{4}$ 〉	<M $\left.{ }_{5}\right\rangle$		$\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$
M	Acc	No	No	Acc	Acc	No	\ldots	
M	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{2}	Acc	Acc	Acc	Acc	Acc	Acc	\ldots	
M_{3}	No	Acc	Acc	No	Acc	Acc	\ldots	
M	Acc	No	Acc	No	Acc	No	\ldots	
M_{5}	No	No	Acc	Acc	No	No	...	
\ldots	...	\ldots	...	\ldots	\cdots	\ldots	\ldots	
	No	No	No	Acc	No	Acc		

Diagonalization Revisited

- The diagonalization language, which we denote $\boldsymbol{L}_{\mathbf{D}}$, is defined as

$$
\begin{gathered}
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a TM and }\langle M\rangle \notin \\
\mathscr{L}(M)\}
\end{gathered}
$$

- That is, L_{D} is the set of descriptions of Turing machines that do not accept themselves.

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a TM and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$.

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must be some recognizer R such that $\mathscr{L}(R)=L_{D}$.

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must be some recognizer R such that $\mathscr{L}(R)=L_{\mathrm{D}}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a $T M$ and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff } \quad\langle M\rangle \in \mathscr{L}(R) \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
\text { Because } \mathcal{L}(R)=L_{D} \text {, we know that a string } \\
\text { belongs to one set if and only if it } \\
\text { belongs to the other. }
\end{gathered}
$$

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must be some recognizer R such that $\mathscr{L}(R)=L_{\mathrm{D}}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$.

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a $T M$ and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbb{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{\mathrm{D}}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\langle M\rangle \notin \mathscr{L}(M) \text { iff } \quad\langle M\rangle \in \mathscr{L}(R) .
$$

> We've replaced the left-hand side of this biconditional with an equivalent statement.

$L_{\mathrm{D}}=\{\langle M\rangle \mid M$ is a TM and $\langle M\rangle \notin \mathscr{L}(M)\}$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff } \quad\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{\mathrm{D}}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M.

> A nice consequence of a universallyquantified statement is that it should work in all cases.

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff } \quad\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$
\begin{equation*}
\langle R\rangle \notin \mathscr{L}(R) \quad \text { iff } \quad\langle R\rangle \in \mathscr{L}(R) . \tag{3}
\end{equation*}
$$

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff } \quad\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$
\begin{equation*}
\langle R\rangle \notin \mathscr{L}(R) \quad \text { iff } \quad\langle R\rangle \in \mathscr{L}(R) . \tag{3}
\end{equation*}
$$

This is clearly impossible.

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\langle M\rangle \notin \mathscr{L}(M) \text { iff }\langle M\rangle \in \mathscr{L}(R) .
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$
\begin{equation*}
\langle R\rangle \notin \mathscr{L}(R) \quad \text { iff } \quad\langle R\rangle \in \mathscr{L}(R) . \tag{3}
\end{equation*}
$$

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong.

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{\mathrm{D}}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$
\begin{equation*}
\langle R\rangle \notin \mathscr{L}(R) \quad \text { iff } \quad\langle R\rangle \in \mathscr{L}(R) . \tag{3}
\end{equation*}
$$

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{\mathrm{D}} \notin \mathbf{R E}$.

$$
L_{\mathrm{D}}=\{\langle M\rangle \mid M \text { is a } T M \text { and }\langle M\rangle \notin \mathscr{L}(M)\}
$$

Theorem: $L_{\mathrm{D}} \notin$ RE.
Proof: By contradiction; assume that $L_{\mathrm{D}} \in \mathbf{R E}$. Then there must
be some recognizer R such that $\mathscr{L}(R)=L_{D}$.
Let M be an arbitrary TM. Since $\mathscr{L}(R)=L_{D}$, we know that

$$
\begin{equation*}
\langle M\rangle \in L_{\mathrm{D}} \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{1}
\end{equation*}
$$

From the definition of L_{D}, we see that $\langle M\rangle \in L_{\mathrm{D}}$ iff $\langle M\rangle \notin \mathscr{L}(M)$. Combining this with statement (1) tells us that

$$
\begin{equation*}
\langle M\rangle \notin \mathscr{L}(M) \text { iff }\langle M\rangle \in \mathscr{L}(R) . \tag{2}
\end{equation*}
$$

Since our choice of M was arbitrary, we see that statement (2) holds for any TM M. In particular, this means that statement (2) holds for the TM R, which tells us that

$$
\begin{equation*}
\langle R\rangle \notin \mathscr{L}(R) \quad \text { iff } \quad\langle R\rangle \in \mathscr{L}(R) . \tag{3}
\end{equation*}
$$

This is clearly impossible. We have reached a contradiction, so our assumption must have been wrong. Thus $L_{\mathrm{D}} \notin$ RE.

All Languages

What This Means

- On a deeper philosophical level, the fact that nonRE languages exist supports the following claim:

There are statements that are true but not provable.

- Intuitively, given any non-RE language, there will be some string in the language that cannot be proven to be in the language.
- This result can be formalized as a result called Gödel's incompleteness theorem, one of the most important mathematical results of all time.
- Want to learn more? Take Phil 152 or CS154!

What This Means

- On a more philosophical note, you could interpret the previous result in the following way:

There are inherent limits about what mathematics can teach us.

- There's no automatic way to do math. There are true statements that we can't prove.
- That doesn't mean that mathematics is worthless. It just means that we need to temper our expectations about it.

The Big Picture

Up to this point:
"Can we solve this problem?" (Computability Theory)

Up to this point: "Can we solve this problem?" (Computability Theory)

Up to this point:
 "Can we solve this problem?" (Computability Theory)

Starting today:
"Ok, even if we can, we need to consider whether the time/resources required actually make practical/feasible sense."
(Complexity Theory)

Where We've Been

- The class \mathbf{R} represents problems that can be solved by a computer.
- The class RE represents problems where "yes" answers can be verified by a computer.

Where We're Going

- The class \mathbf{P} represents problems that can be solved efficiently by a computer.
- The class NP represents problems where "yes" answers can be verified efficiently by a computer.

