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The Class RE

● Languages L that are in RE, but not R, are 
those where:
● We can build a TM M, where (ℒ M) = L
● That TM M has the risk of getting stuck in an 

infinite loop for at least some input string(s)
– But by definition of (ℒ M), only input strings 

that are not in L are at risk of looping in M
● Just like the class Regular was defined in 

multiple ways (DFAs, NFAs, RegExes), today 
we’ll learn another way to define this class RE! 



  

Get ready to answer 
some questions in rapid-fire style! 

(about 10 seconds per question)

Get ready to answer 
some questions in rapid-fire style! 

(about 10 seconds per question)



  

Definition:

A k-Clique is a set of k vertices of a graph 
that are all adjacent to each other (all 

possible edges between those k vertices 
are present in the graph). 

has a 4-Clique: does not have a 4-Clique 
(has a 3-Clique though):



  

QUICK REACTION: Does this graph contain a 4-clique?QUICK REACTION: Does this graph contain a 4-clique?



  

Reflection:

Hm, that was kind of hard to assess in just 
10 seconds! What if I select and highlight 
just some of the nodes for you, would that 

be a helpful hint?



  

WITH A “HINT”(?): Does this graph contain a 4-clique?WITH A “HINT”(?): Does this graph contain a 4-clique?



  

Reflection:

That was a terrible so-called “hint”! It 
didn’t make the problem any easier to 

solve. :-( 



  

WITH A NEW HINT: Does this graph contain a 4-clique?WITH A NEW HINT: Does this graph contain a 4-clique?



  

Reflection:

The hint format (highlight some subset of 4 
nodes) was a good format, but the hint is 

only helpful if the contents are the correct 
subset.



  

Discussion Question:

We found an effective, concise hint format 
for proving that a graph has a 4-Clique. 

What about for proving a graph does not 
have a 4-Clique? What would an effective, 

concise hint format for that look like? 



  

Key intuition behind our next way of 
defining RE:

A language L is in RE if, for any string w, if 
you know that w ∈ L, then there is some 

piece of evidence (a “hint”) you could 
provide to make the problem of checking 

that fact very easy.



  

More examples of
helpful hints

vs 
unhelpful hints



  

Verification
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Verification
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Verification
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Verification

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)
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Verification
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Verification
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Verification
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Verification

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)



  

Verification
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Verification
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Verification

● In each of the preceding cases, we were given some 
problem and some evidence supporting the claim that 
the answer is “yes.”

● Given correct/helpful evidence, we can quickly see 
that the answer is indeed “yes.”

● Given incorrect/unhelpful evidence, we aren't 
immediately sure whether the answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,” 

because the answer is no!
● Or maybe there is some evidence, but just not the evidence 

we were given.
● Let's formalize this idea.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L  ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called a 

certificate for w.
● This is the “evidence.”

● Intuitively, what does this mean?



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.
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Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● More notes about V:

● Notice that c is existentially quantified. 
● Notice V is required to halt always (like a 

decider).



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● More notes about V:

● Notice that (ℒ V) ≠ L. (Good question to hold on 
to for a second: what is (ℒ V)?)

● The job of V is just to check certificates, not to 
decide membership in L.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A note about c:

● Figuring out what would make a good certificate 
(should it be a number of steps to take, an 
equation-solving variable assignment, a set of 
graph nodes, an array of numbers to fill in a 
whole Sudoku board?) is custom work to do for 
each different language L.



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

Does this always halt?Does this always halt?



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
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        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

For one given ⟨n⟩ ∈ L (say 11), how many different values 
of c will work to cause the verifier to accept?

For one given ⟨n⟩ ∈ L (say 11), how many different values 
of c will work to cause the verifier to accept?



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

How many of these statements are true of (ℒ V)?
● ℒ(V) = L
● ℒ(V) ⊆ L
● L ⊆ (ℒ V)

How many of these statements are true of (ℒ V)?
● ℒ(V) = L
● ℒ(V) ⊆ L
● L ⊆ (ℒ V)



  

Some Verifiers

● Let L be the following language:

    L = { ⟨G⟩ | G is a graph and G has a
                      Hamiltonian path }

● (A Hamiltonian path is a simple path that visits 
every node in the graph.)

● Let's see how to build a verifier for L.



  

Verification

Is there a simple path that goes 
through every node exactly once?
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4

6

3



  

Verifier Example: 
Hamiltonian Path

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

  

 

● Do you see why ⟨G⟩ ∈ L iff there is a c where 
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i < c.size() - 1; i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i < c.size() - 1; i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}



  

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm



  

Where We’re Going Today

Verifier Recognizer

Somehow build this

Somehow build this



  

Verifier for ATM?

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is our standard example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifier for it!



  

Verifier for ATM?

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifier for it!

What would make a good certificate for 
a verifier for ATM?

What would make a good certificate for 
a verifier for ATM?



  

A Verifier for ATM 
● Recall ATM = { ⟨M, w⟩ | M is a TM and M accepts w}

  

 

● Do you see why M accepts w iff there is some c 
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}



  

Equivalence of Verifiers and 
Recognizers

Verifier Recognizer

Enforce a step count



  

What languages are verifiable?



  

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
             if (V accepts ⟨w, c ) ⟩ return true;
        }
        i++;
    }
}

What set of strings does mysteryFunction return true on?

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
             if (V accepts ⟨w, c ) ⟩ return true;
        }
        i++;
    }
}

What set of strings does mysteryFunction return true on?



  

Equivalence of Verifiers and 
Recognizers

Verifier Recognizer

Try all certificates

Enforce a step count



  

Theorem: If L is a language, then there is 
a verifier for L if and only if L ∈ RE.



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifiers and RE
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Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

  

 

 

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩. 
The function isInL tries all possible strings as 
certificate, so it will eventually find c (or some other 
certificate), see V accept ⟨w, c⟩, then return true. 
Conversely, if isInL(w) returns true, then there was 
some string c such that V accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts w, c ) ⟨ ⟩ return true;
      }
      i++;
   }
}

bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts w, c ) ⟨ ⟩ return true;
      }
      i++;
   }
}



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for 

the language L, show how to construct a verifier 
V for L.

● The challenges:
● A recognizer M is not required to halt on all inputs. A 

verifier V must always halt.
● A recognizer M takes in one single input. A verifier V 

takes in two inputs.
● We’ll need to find a way of reconciling these 

requirements.



  

Recall: If M is a recognizer for a language 
L, then M accepts w iff w ∈ L.

Key insight: If M accepts a string w, it 
always does so in a finite number of steps.

Idea: Adapt the verifier for A    into a more 
general construction that turns any 

recognizer into a verifier by running it for a 
fixed number of steps.

TM



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Consider the following program:

  

 

 

Notice that checkIsInL always halts, since each step takes 
only finite time to complete. Next, notice that if there is a c 
where checkIsInL(w, c) returns true, then M accepted w 
after running for c steps, so w ∈ L. Conversely, if w ∈ L, then 
M accepts w after some number of steps (call that number 
c). Then checkIsInL(w, c) will run M on w for c steps, 
watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }



  

RE and Proofs

● Verifiers and recognizers give two different 
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that 
strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● You can think of a recognizer as a device that 
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.



  

RE and Proofs

● If the RE languages represent languages 
where membership can be proven, what 
does a non-RE language look like?

● Intuitively, a language is not in RE if 
there is no general way to prove that a 
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a 
string was in the language, you may 
never be able to convince anyone of it!



  

Unsolvable Problems



  

Finding Non-RE Languages



  

Finding Non-RE Languages

● Remember RE but non-R (undecidable) 
languages are those where we can reliably 
identify strings in the language, but cannot 
readily identify strings that are not in the 
language.

● Non-RE languages will be those where we 
cannot even readily identify strings that are in 
the language! 

● How might we find an example of a non-RE 
language?



  

Languages, TMs, and TM Encodings

● What happens if we list off all Turing 
machines, looking at how those TMs 
behave when given other TM codes (as 
strings, so various ⟨Mx⟩ strings) as input?
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Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then A - E.

Answer at PollEv.com/cs103 or
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What is (Mℒ 0)? 
A. Σ*
B. {⟨M0⟩, ⟨M3⟩, ⟨M4⟩, … }

C. {⟨M0⟩}

D. {⟨M0⟩, ⟨M1⟩, ⟨M2⟩, ⟨M3⟩, …}
E. Something else.

What is (Mℒ 0)? 
A. Σ*
B. {⟨M0⟩, ⟨M3⟩, ⟨M4⟩, … }

C. {⟨M0⟩}

D. {⟨M0⟩, ⟨M1⟩, ⟨M2⟩, ⟨M3⟩, …}
E. Something else.
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ℒ(M0) = {⟨M0⟩, 
⟨M3⟩, ⟨M4⟩, …}. 

And we can’t see 
the rest of the 

table for M2, but it 
accepts everything 

so far, so it’s at 
least possible that 

its language is 
(Mℒ 2) = Σ*.
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Aside: we aren’t really 
worrying about the existence 

of other strings that aren’t 
TM code right now, but you 

could also think of it 
including those strings, so 

(ℒ M0) = {⟨M0⟩, ⟨M3⟩, ⟨M4⟩, 
…}  {⋃ w | w is a string that 
isn’t a TM’s code, and M0 

accepts w}   
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Quick check: 
How many of the TMs 
on this chart so far do 
NOT accept their own 

code as a string?
(Enter a number.)

Quick check: 
How many of the TMs 
on this chart so far do 
NOT accept their own 

code as a string?
(Enter a number.)

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.
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Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then your answer.
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text CS103 to 22333 once to join, then your answer.

What are we going
to do next?

What are we going
to do next?
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Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ 
ℒ(M) }

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 



  

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. Then there must
be some TM R such that (ℒ R) = LD.

 

Since (ℒ R) = LD, we know that if M is any TM, then
 

⟨M⟩ ∈ LD iff   ⟨M⟩ ∈ (ℒ R) (1)
 

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

 

⟨M⟩ ∉ (ℒ M) iff   ⟨M⟩ ∈ (ℒ R) (2)
 

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

 

⟨R⟩ ∉ (ℒ R) iff    ⟨R⟩ ∈ (ℒ R) (3)
 

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■
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Because ℒ(R) = LD, we know that a string 
belongs to one set if and only if it 

belongs to the other.

Because ℒ(R) = LD, we know that a string 
belongs to one set if and only if it 

belongs to the other.
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What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will 
be some string in the language that cannot be 
proven to be in the language.

● This result can be formalized as a result called 
Gödel's incompleteness theorem, one of the 
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!



  

What This Means

● On a more philosophical note, you could interpret 
the previous result in the following way:

There are inherent limits about what 
mathematics can teach us.

● There's no automatic way to do math. There are 
true statements that we can't prove.

● That doesn't mean that mathematics is worthless. 
It just means that we need to temper our 
expectations about it.



  

The Big Picture

DFA NFA
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Up to this point: 
“Can we solve this problem?”

(Computability Theory)

Starting today: 
“Ok, even if we can, we need to consider 

whether the time/resources required 
actually make practical/feasible sense.”

(Complexity Theory)
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Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer. 

The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified efficiently by a 
computer.
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